Scattering of plane waves in self-dual Yang - Mills theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L625
(http://iopscience.iop.org/0305-4470/29/24/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Scattering of plane waves in self-dual Yang-Mills theory

Vladimir E Korepin $\dagger \ddagger \S \|$ and Takeshi Oota $\S \mathbb{}$
\dagger Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
\ddagger Sankt Petersburg Department of Mathematical Institute of Academy of Sciences of Russia § Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan

Received 6 September 1996

Abstract

We consider the classical self-dual Yang-Mills equation in $(3+1)$-dimensional Minkowski space. We have found a new solution. It describes the scattering of n plane waves. The construction which we use is similar to the quantum inverse scattering method. We introduce a 'Monodromy matrix' \hat{T}. It acts in the direct product of the universal enveloping of $S U(N)$ algebra and an auxiliary linear space. In order to obtain the solution of the self-dual Yang-Mills equation, we take a special matrix element of $(1-\hat{T})^{-1}$ in the auxiliary space.

We consider a classical Yang-Mills field valued in the $S U(N)$ algebra, defined over (3+1)dimensional Minkowski space. We study the self-dual equation:

$$
\begin{equation*}
F_{\mu \nu}=\frac{\mathrm{i}}{2} \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma} . \tag{1}
\end{equation*}
$$

The study of this self-dual Yang-Mills equation is important for the understanding of QCD [1-7].

Following [8], we take the light-cone gauge $A_{0-z}=0$. Then the self-dual Yang-Mills equation leads to the relations

$$
\begin{equation*}
A_{x+\mathrm{i} y}=0 \quad A_{0+z}=\sqrt{2} \partial_{x+\mathrm{i} y} \Phi \quad A_{x-\mathrm{i} y}=\sqrt{2} \partial_{0-z} \Phi . \tag{2}
\end{equation*}
$$

Here $A_{0 \pm z}=A_{0} \pm A_{z}, A_{x \pm \mathrm{i} y}=A_{x} \mp \mathrm{i} A_{y}{ }^{+}$and Φ is a scalar $S U(N)$-valued field which satisfies the following equation:

$$
\begin{equation*}
\square \Phi-\mathrm{i} g\left[\partial_{x+\mathrm{i} y} \Phi, \partial_{0-z} \Phi\right]=0 \tag{3}
\end{equation*}
$$

This is associated with a cubic action [9]. Following [10], we start looking for the solution of equation (3) using perturbation theory in the coupling constant g :

$$
\begin{equation*}
\Phi(x)=\sum_{m=1}^{\infty} \Phi^{(m)}(x) \tag{4}
\end{equation*}
$$

Here, $\Phi^{(m)}$ depends on the coupling as g^{m-1}. The first term satisfies a linear equation

$$
\begin{equation*}
\square \Phi^{(1)}=0 . \tag{5}
\end{equation*}
$$

|| E-mail address: korepin@insti.physics.sunysb.edu

- E-mail address: toota@yukawa.kyoto-u.ac.jp
+ We use the coordinate $X^{0 \pm z}=(t \pm z) / 2$ and $X^{x \pm i y}=(x \pm \mathrm{i} y) / 2$ with metric $g_{0+z, 0-z}=-g_{x+\mathrm{i} y, x-\mathrm{i} y}=2$.

We choose $\Phi^{(1)}$ as a sum of n plane waves

$$
\begin{equation*}
\Phi^{(1)}(x)=-\mathrm{i} \sum_{j=1}^{n} T^{a_{j}} \mathrm{e}^{-\mathrm{i} k_{j} x} f\left(k_{j}\right) \tag{6}
\end{equation*}
$$

Here T^{a} are $S U(N)$ generators

$$
\begin{equation*}
\left[T^{a}, T^{b}\right]=\mathrm{i} \sqrt{2} f^{a b c} T^{c} \quad \operatorname{tr} T^{a} T^{b}=\delta^{a b} \tag{7}
\end{equation*}
$$

The index a_{j} specifies a 'colour' of the j th plane wave. The k_{j} are a set of n different light-cone vectors $k_{j}^{2}=0$, and $f(k)$ is a function with support on the light-cone. We will also use the following notation:

$$
\begin{equation*}
Q_{j}=\frac{\left(k_{j}\right)_{0+z}}{\left(k_{j}\right)_{x+\mathrm{i} y}}=\frac{\left(k_{j}\right)_{x-\mathrm{i} y}}{\left(k_{j}\right)_{0-z}} . \tag{8}
\end{equation*}
$$

We have found explicit expressions for the $\Phi^{(m)}$. The first two terms coincide with the results of [10], but all other $\Phi^{(m)}(m \geqslant 3)$ are different.

Let us explain our solution. We shall use an abbreviation:

$$
\begin{equation*}
\phi(j)=T^{a_{j}} \mathrm{e}^{-\mathrm{i} k_{j} x} f\left(k_{j}\right) \tag{9}
\end{equation*}
$$

We introduce the following function:

$$
\begin{equation*}
V(a)=\sum_{n=0}^{\infty} \frac{1}{(n!)^{2}} a^{n}=\oint \frac{\mathrm{d} t}{2 \pi \mathrm{i}} \frac{\mathrm{e}^{1 / t+a t}}{t}=I_{0}(2 \sqrt{a}) \tag{10}
\end{equation*}
$$

Here I_{0} is a modified Bessel function of the first kind. The integration contour is a circle around zero. We integrate in the positive direction.

Let us define a linear operator \hat{T} by giving its kernel:

$$
\begin{align*}
& T\left(\alpha_{1}, \alpha_{2} ; j_{1}, j_{2}\right)=g \phi\left(j_{1}\right) P\left(j_{1}, j_{2}\right) \\
& \times \int_{0}^{\infty} \mathrm{d} s \mathrm{e}^{-s} V\left(s \alpha_{1} g \phi\left(j_{1}\right) P\left(j_{1}, j_{2}\right)\right) V\left(s \alpha_{2} g \phi\left(j_{2}\right) P\left(j_{1}, j_{2}\right)\right) \tag{11}
\end{align*}
$$

Here j_{1} and j_{2} run through n values. The integration variables $\alpha_{1,2}$ take values in the unit interval [0,1]. We shall consider T as an operator acting on a direct product of n-dimensional vector space and the space of functions on the unit interval. The kernel $T\left(\alpha_{1}, \alpha_{2} ; j_{1}, j_{2}\right)$ takes its values in the universal enveloping algebra of $S U(N)$. We are using $P\left(j_{1}, j_{2}\right)$ which is defined by

$$
P\left(j_{1}, j_{2}\right)= \begin{cases}\left(Q_{j_{1}}-Q_{j_{2}}\right)^{-1} & \text { for } j_{1} \neq j_{2} \tag{12}\\ 0 & \text { for } j_{1}=j_{2}\end{cases}
$$

The kernel $T\left(\alpha, \alpha^{\prime} ; j, j^{\prime}\right)$ depends only on the j th and j^{\prime} th plane waves. It vanishes if $j=j^{\prime}$.

The function (11) is a kernel of an operator \hat{T}

$$
(\hat{T})_{\left(\alpha_{1} ; j_{1}\right),\left(\alpha_{2} ; j_{2}\right)}=T\left(\alpha_{1}, \alpha_{2} ; j_{1}, j_{2}\right)
$$

whose index $(\alpha ; j)$ takes values in $[0,1] \times\{1,2, \ldots, n\}$. It acts on a 'vector' $(f)_{(\alpha ; j)}$ (which takes its value in the universal enveloping algebra) as follows:

$$
\begin{equation*}
(\hat{T} f)_{(\alpha ; j)}=\sum_{j^{\prime}=1}^{n} \int_{0}^{1} \mathrm{~d} \alpha^{\prime} T\left(\alpha, \alpha^{\prime} ; j, j^{\prime}\right)(\boldsymbol{f})_{\left(\alpha^{\prime} ; j^{\prime}\right)} \tag{13}
\end{equation*}
$$

\hat{T} can be compared with the monodromy matrix of the quantum inverse scattering method. It acts on the direct product of the universal enveloping algebra of $S U(N)$ and an auxiliary
space. The auxiliary space is also a direct product of n-dimensional vector space and a linear space of functions defined on the unit interval $0 \leqslant \alpha \leqslant 1$. We call \hat{T} the 'monodromy matrix'.

We introduce two special 'vectors' (see (9))

$$
\begin{equation*}
(\phi)_{(\alpha ; j)}=\phi(j) \quad\left(\phi_{0}\right)_{(\alpha ; j)}=1 \tag{14}
\end{equation*}
$$

For example, a scalar product of ϕ_{0} and an arbitrary vector function f is equal to

$$
\phi_{0} \cdot \boldsymbol{f}=\sum_{j=1}^{n} \int_{0}^{1} \mathrm{~d} \alpha(f)_{(\alpha ; j)} .
$$

Now all the notation is prepared to allow us to write down the solution of the self-dual equation (3) that we have found:

$$
\begin{equation*}
\Phi(x)=-\mathrm{i} \phi_{0} \cdot\left(\frac{1}{1-\hat{T}}\right) \phi \tag{15}
\end{equation*}
$$

This is the main result of our paper.
The operator $(1-\hat{T})^{-1}$ in equation (15) is defined by the infinite series

$$
\begin{equation*}
\Phi(x)=-\mathrm{i} \phi_{0} \cdot\left(\sum_{l=0}^{\infty}(\hat{T})^{l}\right) \phi \tag{16}
\end{equation*}
$$

The exact expression for each term

$$
\begin{equation*}
\tilde{\Phi}^{(l)}(x)=-\mathrm{i} \phi_{0} \cdot(\hat{T})^{l-1} \phi \tag{17}
\end{equation*}
$$

is given by

$$
\begin{align*}
& \tilde{\Phi}^{(l)}(x)=-\mathrm{i} \sum_{j_{1}=1}^{n} \\
& \sum_{j_{2}=1}^{n} \ldots \sum_{j_{i}=1}^{n} \int_{0}^{1} \mathrm{~d} \alpha_{1} \int_{0}^{1} \mathrm{~d} \alpha_{2} \ldots \tag{18}\\
& \ldots \int_{0}^{1} \mathrm{~d} \alpha_{l} T\left(\alpha_{1}, \alpha_{2} ; j_{1}, j_{2}\right) T\left(\alpha_{2}, \alpha_{3} ; j_{2}, j_{3}\right) \ldots T\left(\alpha_{l-1}, \alpha_{l} ; j_{l-1}, j_{l}\right) \phi\left(j_{l}\right) .
\end{align*}
$$

The proof of formulae (15) and (16) can be given as follows. One decomposes the self-dual equation (3) into a Taylor series in the coupling constant g. Then one explicitly evaluates each term. One must make sure that this perturbative series satisfies the self-dual equation (3). All the details of the calculations can be found in [11].

Remark 1. We can perform the s-integration in the definition of the 'monodromy matrix' (11) using the formula for the Bessel function. If $\phi\left(j_{1}\right)$ and $\phi\left(j_{2}\right)$ in equation (11) commute, then the result can be written in terms of the exponential function and $V(a)(10)$ (or the modified Bessel function I_{0}).

Remark 2. Our formulae are complicated. So let us study them in a simplified situation. Let us consider what will happen to our formulae if all n generators $T^{a_{j}}$ belong to a Cartan subalgebra of $S U(N)$ algebra:

$$
\begin{equation*}
\left[\phi(j), \phi\left(j^{\prime}\right)\right]=0 \quad \forall j, j^{\prime}=1, \ldots, n \tag{19}
\end{equation*}
$$

in (9). For this case, a cancellation between many terms gives a trivial solution:

$$
\begin{equation*}
\Phi^{(l)}(x)=0 \quad \text { for } l \geqslant 2 \tag{20}
\end{equation*}
$$

The result is the sum of n place waves which we chose as the input of the iteration:

$$
\begin{equation*}
\Phi(x)=\Phi^{(1)}(x)=-\mathrm{i} \phi_{0} \cdot \phi=-\mathrm{i} \sum_{j=1}^{n} T^{a_{j}} \mathrm{e}^{-\mathrm{i} k_{j} x} f\left(k_{j}\right) \tag{21}
\end{equation*}
$$

Remark 3. To derive our formula (15), we have not used any properties of the $S U(N)$ generators. So our formula is valid not only for $S U(N)$ but also for other gauge groups. The two requirements to obtain the formula is that $\phi(j)$ in (9) satisfies the free equation and all momenta $k_{j}(j=1, \ldots, n)$ are different in order that $P\left(j_{1}, j_{2}\right)$ in (12) are well defined. We can choose $\phi(j)$ as some linear combination of the generators of the gauge group:

$$
\phi(j)=-\mathrm{i} \mathrm{e}^{-\mathrm{i} k_{j} x}\left(\sum_{a_{j}} f_{a_{j}}^{(j)}\left(k_{j}\right) T^{a_{j}}\right) .
$$

Here, $f_{a_{j}}^{(j)}\left(k_{j}\right)$ is a function with support on the light-cone. This linear combination can be interpreted as a set of plane waves with various colours but with the same momentum k_{j}. So we can treat the case of a set of particles having the same momenta.

We wish to thank Professor T Inami for useful discussions. This work is partly supported by the National Science Foundation (NSF) under grants no PHY-9321165 and by the Japan Society for the Promotion of Science. TO is supported by the JSPS Research Fellowships for Young Scientists.

References

[1] Polyakov A M 1975 Phys. Lett. 59B 82
[2] Belavin A A, Polyakov A M, Schwartz A S and Tyupkin Yu S 1975 Phys. Lett. 59B 85
[3] Atiyah M F, Drinfeld V G, Hitchin N J and Manin Y I 1978 Phys. Lett. 65A 185
[4] Korepin V E and Shatashvili S L 1983 Sov. Phys. Dokl. 281018
[5] Takasaki K 1984 Commun. Math. Phys. 9435
[6] de Vega H J 1988 Commun. Math. Phys. 116659
[7] Witten E 1995 J. Geom. Phys. 15 215-26
[8] Bruschi M, Levi D and Ragnisco O 1982 Nuovo Cimento 33263
[9] Leznov A N and Mukhtarov M A 1987 J. Math. Phys. 282574
[10] Cangemi D 1996 Self-dual Yang-Mills theory and one-loop like-helicity QCD multi-gluon amplitudes Preprint UCLA-96-TEP-16, hep-th/9605208
Parkes A 1992 Phys. Lett. 286B 265
[11] Korepin V E and Oota T 1996 Scattering of plane waves in self-dual Yang-Mills theory Preprint YITP-96-33, hep-th/9608064

