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LETTER TO THE EDITOR
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Vladimir E Korepin†‡§‖ and Takeshi Oota§¶
† Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook,
NY 11794-3840, USA
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Abstract. We consider the classical self-dual Yang–Mills equation in(3 + 1)-dimensional
Minkowski space. We have found a new solution. It describes the scattering ofn plane waves.
The construction which we use is similar to the quantum inverse scattering method. We introduce
a ‘Monodromy matrix’ T̂ . It acts in the direct product of the universal enveloping ofSU(N)

algebra and an auxiliary linear space. In order to obtain the solution of the self-dual Yang–Mills
equation, we take a special matrix element of(1 − T̂ )−1 in the auxiliary space.

We consider a classical Yang–Mills field valued in theSU(N) algebra, defined over(3+1)-
dimensional Minkowski space. We study the self-dual equation:

Fµν = i

2
εµνρσF ρσ . (1)

The study of this self-dual Yang–Mills equation is important for the understanding of QCD
[1–7].

Following [8], we take the light-cone gaugeA0−z = 0. Then the self-dual Yang–Mills
equation leads to the relations

Ax+iy = 0 A0+z =
√

2∂x+iy8 Ax−iy =
√

2∂0−z8. (2)

Here A0±z = A0 ± Az, Ax±iy = Ax ∓ iAy
+ and 8 is a scalarSU(N)-valued field which

satisfies the following equation:

�8 − ig[∂x+iy8, ∂0−z8] = 0. (3)

This is associated with a cubic action [9]. Following [10], we start looking for the solution
of equation (3) using perturbation theory in the coupling constantg:

8(x) =
∞∑

m=1

8(m)(x). (4)

Here,8(m) depends on the coupling asgm−1. The first term satisfies a linear equation

�8(1) = 0. (5)

‖ E-mail address: korepin@insti.physics.sunysb.edu
¶ E-mail address: toota@yukawa.kyoto-u.ac.jp
+ We use the coordinateX0±z = (t ± z)/2 andXx±iy = (x ± iy)/2 with metricg0+z,0−z = −gx+iy,x−iy = 2.
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We choose8(1) as a sum ofn plane waves

8(1)(x) = −i
n∑

j=1

T aj e−ikj xf (kj ). (6)

HereT a areSU(N) generators

[T a, T b] = i
√

2f abcT c tr T aT b = δab. (7)

The indexaj specifies a ‘colour’ of thej th plane wave. Thekj are a set ofn different
light-cone vectorsk2

j = 0, andf (k) is a function with support on the light-cone. We will
also use the following notation:

Qj = (kj )0+z

(kj )x+iy
= (kj )x−iy

(kj )0−z

. (8)

We have found explicit expressions for the8(m). The first two terms coincide with the
results of [10], but all other8(m) (m > 3) are different.

Let us explain our solution. We shall use an abbreviation:

φ(j) = T aj e−ikj xf (kj ). (9)

We introduce the following function:

V (a) =
∞∑

n=0

1

(n!)2
an =

∮
dt

2π i

e1/t+at

t
= I0(2

√
a). (10)

Here I0 is a modified Bessel function of the first kind. The integration contour is a circle
around zero. We integrate in the positive direction.

Let us define a linear operator̂T by giving its kernel:

T (α1, α2; j1, j2) = gφ(j1)P (j1, j2)

×
∫ ∞

0
ds e−sV (sα1gφ(j1)P (j1, j2))V (sα2gφ(j2)P (j1, j2)). (11)

Here j1 and j2 run throughn values. The integration variablesα1,2 take values in the
unit interval [0, 1]. We shall considerT as an operator acting on a direct product of
n-dimensional vector space and the space of functions on the unit interval. The kernel
T (α1, α2; j1, j2) takes its values in the universal enveloping algebra ofSU(N). We are
usingP(j1, j2) which is defined by

P(j1, j2) =
{

(Qj1 − Qj2)
−1 for j1 6= j2

0 for j1 = j2.
(12)

The kernelT (α, α′; j, j ′) depends only on thej th and j ′th plane waves. It vanishes if
j = j ′.

The function (11) is a kernel of an operatorT̂

(T̂ )(α1;j1),(α2;j2) = T (α1, α2; j1, j2)

whose index(α; j) takes values in [0, 1]×{1, 2, . . . , n}. It acts on a ‘vector’(f)(α;j) (which
takes its value in the universal enveloping algebra) as follows:

(T̂ f)(α;j) =
n∑

j ′=1

∫ 1

0
dα′ T (α, α′; j, j ′)(f)(α′;j ′). (13)

T̂ can be compared with the monodromy matrix of the quantum inverse scattering method.
It acts on the direct product of the universal enveloping algebra ofSU(N) and an auxiliary
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space. The auxiliary space is also a direct product ofn-dimensional vector space and a linear
space of functions defined on the unit interval 06 α 6 1. We call T̂ the ‘monodromy
matrix’.

We introduce two special ‘vectors’ (see (9))

(φ)(α;j) = φ(j) (φ0)(α;j) = 1. (14)

For example, a scalar product ofφ0 and an arbitrary vector functionf is equal to

φ0 · f =
n∑

j=1

∫ 1

0
dα (f )(α;j).

Now all the notation is prepared to allow us to write down the solution of the self-dual
equation (3) that we have found:

8(x) = −iφ0 ·
(

1

1 − T̂

)
φ. (15)

This is the main result of our paper.
The operator(1 − T̂ )−1 in equation (15) is defined by the infinite series

8(x) = −iφ0 ·
( ∞∑

l=0

(T̂ )l
)

φ. (16)

The exact expression for each term

8̃(l)(x) = −iφ0 · (T̂ )l−1φ (17)

is given by

8̃(l)(x) = −i
n∑

j1=1

n∑
j2=1

. . .

n∑
jl=1

∫ 1

0
dα1

∫ 1

0
dα2 . . .

. . .

∫ 1

0
dαl T (α1, α2; j1, j2)T (α2, α3; j2, j3) . . . T (αl−1, αl; jl−1, jl)φ(jl).

(18)

The proof of formulae (15) and (16) can be given as follows. One decomposes the self-dual
equation (3) into a Taylor series in the coupling constantg. Then one explicitly evaluates
each term. One must make sure that this perturbative series satisfies the self-dual equation
(3). All the details of the calculations can be found in [11].

Remark 1. We can perform thes-integration in the definition of the ‘monodromy matrix’
(11) using the formula for the Bessel function. Ifφ(j1) andφ(j2) in equation (11) commute,
then the result can be written in terms of the exponential function andV (a) (10) (or the
modified Bessel functionI0).

Remark 2. Our formulae are complicated. So let us study them in a simplified situation.
Let us consider what will happen to our formulae if alln generatorsT aj belong to a Cartan
subalgebra ofSU(N) algebra:

[φ(j), φ(j ′)] = 0 ∀j, j ′ = 1, . . . , n (19)

in (9). For this case, a cancellation between many terms gives a trivial solution:

8(l)(x) = 0 for l > 2. (20)

The result is the sum ofn place waves which we chose as the input of the iteration:

8(x) = 8(1)(x) = −iφ0 · φ = −i
n∑

j=1

T aj e−ikj xf (kj ). (21)
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Remark 3. To derive our formula (15), we have not used any properties of theSU(N)

generators. So our formula is valid not only forSU(N) but also for other gauge groups.
The two requirements to obtain the formula is thatφ(j) in (9) satisfies the free equation and
all momentakj (j = 1, . . . , n) are different in order thatP(j1, j2) in (12) are well defined.
We can chooseφ(j) as some linear combination of the generators of the gauge group:

φ(j) = −i e−ikj x

( ∑
aj

f (j)
aj

(kj )T
aj

)
.

Here,f (j)
aj

(kj ) is a function with support on the light-cone. This linear combination can be
interpreted as a set of plane waves with various colours but with the same momentumkj .
So we can treat the case of a set of particles having the same momenta.

We wish to thank Professor T Inami for useful discussions. This work is partly supported
by the National Science Foundation (NSF) under grants no PHY-9321165 and by the Japan
Society for the Promotion of Science. TO is supported by the JSPS Research Fellowships
for Young Scientists.

References

[1] Polyakov A M 1975 Phys. Lett.59B 82
[2] Belavin A A, Polyakov A M, Schwartz A S and Tyupkin Yu S 1975Phys. Lett.59B 85
[3] Atiyah M F, Drinfeld V G, Hitchin N J and Manin Y I 1978 Phys. Lett.65A 185
[4] Korepin V E and Shatashvili S L 1983Sov. Phys. Dokl.28 1018
[5] Takasaki K 1984Commun. Math. Phys.94 35
[6] de Vega H J 1988Commun. Math. Phys.116 659
[7] Witten E 1995J. Geom. Phys.15 215–26
[8] Bruschi M, Levi D and Ragnisco O 1982Nuovo Cimento33 263
[9] Leznov A N and Mukhtarov M A 1987 J. Math. Phys.28 2574

[10] Cangemi D 1996 Self-dual Yang–Mills theory and one-loop like-helicity QCD multi-gluon amplitudes
Preprint UCLA-96-TEP-16, hep-th/9605208

Parkes A 1992Phys. Lett.286B 265
[11] Korepin V E and Oota T 1996 Scattering of plane waves in self-dual Yang–Mills theoryPreprint YITP-96-33,

hep-th/9608064


